Education Playground Setup Guide#
Complete installation instructions for getting started with Education Playground.
Table of Contents#
Prerequisites#
Required#
Optional but Recommended#
VS Code with Jupyter extension (Download)
GPU for deep learning lessons (NVIDIA with CUDA support)
Installation Methods#
Method 1: Using Virtual Environment (Recommended)#
Best for most users. Keeps dependencies isolated from system Python.
Step 1: Clone the Repository#
git clone https://github.com/mykolas-perevicius/Education_Playground.git
cd Education_Playground
Step 2: Create Virtual Environment#
On macOS/Linux:
python3 -m venv venv
source venv/bin/activate
On Windows:
python -m venv venv
venv\Scripts\activate
You should see (venv) in your terminal prompt.
Step 3: Install Dependencies#
# Upgrade pip first
pip install --upgrade pip
# Install all requirements
pip install -r requirements.txt
For minimal installation (just basics, ~500MB):
pip install jupyter numpy pandas matplotlib scikit-learn
For full installation (includes deep learning, ~3GB):
pip install -r requirements.txt
Step 4: Download NLTK Data (for NLP lessons)#
python -c "import nltk; nltk.download('punkt'); nltk.download('stopwords'); nltk.download('wordnet')"
Step 5: Start Jupyter#
jupyter notebook
# Or use JupyterLab for a modern interface
jupyter lab
Your browser will open to http://localhost:8888
Method 2: Using Conda#
Great if you already use Anaconda/Miniconda.
Step 1: Clone Repository#
git clone https://github.com/mykolas-perevicius/Education_Playground.git
cd Education_Playground
Step 2: Create Conda Environment#
conda create -n education-playground python=3.11
conda activate education-playground
Step 3: Install Dependencies#
# Install most packages via conda (faster, pre-compiled)
conda install jupyter numpy pandas matplotlib scikit-learn
# Install remaining via pip
pip install -r requirements.txt
Step 4: Start Jupyter#
jupyter notebook
Method 3: Using Docker#
For advanced users who want a containerized environment.
Step 1: Create Dockerfile#
FROM python:3.11-slim
WORKDIR /app
# Install system dependencies
RUN apt-get update && apt-get install -y \
git \
&& rm -rf /var/lib/apt/lists/*
# Copy requirements
COPY requirements.txt .
# Install Python packages
RUN pip install --no-cache-dir -r requirements.txt
# Download NLTK data
RUN python -c "import nltk; nltk.download('punkt'); nltk.download('stopwords'); nltk.download('wordnet')"
# Copy project files
COPY . .
EXPOSE 8888
CMD ["jupyter", "notebook", "--ip=0.0.0.0", "--port=8888", "--no-browser", "--allow-root"]
Step 2: Build and Run#
docker build -t education-playground .
docker run -p 8888:8888 -v $(pwd):/app education-playground
Verification#
Test your installation by running this in Python or a Jupyter cell:
# Test imports
import sys
print(f"Python version: {sys.version}")
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
import tensorflow as tf
print(f"NumPy: {np.__version__}")
print(f"Pandas: {pd.__version__}")
print(f"Scikit-learn: {sklearn.__version__}")
print(f"TensorFlow: {tf.__version__}")
print("\nโ All core packages installed successfully!")
Run the Calibration Test#
jupyter notebook 00_calibration_test.ipynb
This will help you determine which level to start with.
IDE Setup#
VS Code (Recommended)#
Install the Jupyter extension from Microsoft
Open the Education_Playground folder:
File > Open FolderSelect Python interpreter:
Press
Ctrl+Shift+P(orCmd+Shift+Pon Mac)Type โPython: Select Interpreterโ
Choose your
venvorcondaenvironment
Open any
.ipynbfile and start coding!
Recommended VS Code Extensions:
Python (Microsoft)
Jupyter (Microsoft)
Pylance (Microsoft)
Black Formatter
Ruff
JupyterLab#
For a browser-based IDE with advanced features:
pip install jupyterlab
jupyter lab
Benefits:
Multi-tab interface
Built-in terminal
File browser
Extension ecosystem
PyCharm#
Open Education_Playground as a project
Configure Python interpreter:
File > Settings > Project > Python InterpreterInstall Jupyter support:
Settings > Plugins > JupyterOpen
.ipynbfiles directly in PyCharm
Troubleshooting#
Issue: jupyter: command not found#
Solution: Your virtual environment isnโt activated or Jupyter isnโt installed.
# Reactivate virtual environment
source venv/bin/activate # macOS/Linux
venv\Scripts\activate # Windows
# Reinstall Jupyter
pip install jupyter
Issue: TensorFlow installation fails#
Solution: TensorFlow has specific requirements.
On Apple Silicon (M1/M2/M3 Macs):
pip install tensorflow-macos
pip install tensorflow-metal # For GPU acceleration
On Windows with GPU:
pip install tensorflow[and-cuda]
CPU-only (any platform):
pip install tensorflow-cpu
Issue: NLTK data not found#
Solution: Download required NLTK datasets:
import nltk
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('averaged_perceptron_tagger')
Issue: Kernel keeps dying#
Possible causes:
Insufficient RAM (need 4GB+, 8GB+ for deep learning)
Memory leak in code
Outdated packages
Solutions:
# Update packages
pip install --upgrade jupyter ipykernel
# Restart kernel: Kernel > Restart in Jupyter
# Clear outputs before running: Cell > All Output > Clear
Issue: Import errors after installation#
Solution: Wrong Python interpreter selected.
# Check which Python you're using
which python # macOS/Linux
where python # Windows
# Should point to your venv/conda environment
# If not, reactivate your environment
Issue: Slow pip installation#
Solution: Use pipโs cache and parallel downloads:
pip install -r requirements.txt --cache-dir ~/.cache/pip
Or switch to conda for faster binary installs:
conda install --file requirements.txt
Platform-Specific Notes#
macOS#
Use
python3instead ofpythonif you have system Python 2.xMay need Xcode Command Line Tools:
xcode-select --installFor M1/M2/M3 chips, some packages have ARM-specific versions
Windows#
Enable long path support (for deep learning models): Run as Administrator
reg add HKLM\SYSTEM\CurrentControlSet\Control\FileSystem /v LongPathsEnabled /t REG_DWORD /d 1
Use PowerShell or Windows Terminal (better than CMD)
If permission errors, run terminal as Administrator
Linux#
May need build tools:
sudo apt-get install python3-dev build-essentialFor GPU support: Install CUDA toolkit and cuDNN
Check Python version: Many distros ship with older versions
Next Steps#
Take the calibration test:
00_calibration_test.ipynbNavigate to your level:
easy/,medium/, orhard/Read the README: Comprehensive course overview
Check out resources:
RESOURCES.mdfor external learning materialsReview cheatsheets: Quick references as you learn
Getting Help#
Issues with setup: Open an issue on GitHub
Package-specific problems: Check official documentation
Optional: GPU Setup for Deep Learning#
NVIDIA GPU (CUDA)#
Check GPU availability:
import tensorflow as tf
print(f"GPUs available: {tf.config.list_physical_devices('GPU')}")
import torch
print(f"CUDA available: {torch.cuda.is_available()}")
Install CUDA support:
Install NVIDIA CUDA Toolkit
Install cuDNN
Install GPU-enabled versions:
# TensorFlow with GPU
pip install tensorflow[and-cuda]
# PyTorch with GPU (check https://pytorch.org for your CUDA version)
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Apple Silicon (M1/M2/M3)#
pip install tensorflow-macos tensorflow-metal
# PyTorch automatically supports MPS (Metal Performance Shaders)
Happy Learning! Youโre all set to start your programming journey. ๐